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In order to explain the empirical evidence that the dynamics of human activity may not be well modeled by
Poisson processes, a model based on queuing processes was built in the literature �A. L. Barabasi, Nature
�London� 435, 207 �2005��. The main assumption behind that model is that people execute their tasks based on
a protocol that first executes the high priority item. In this context, the purpose of this paper is to analyze the
validity of that hypothesis assuming that people are rational agents that make their decisions in order to
minimize the cost of keeping nonexecuted tasks on the list. Therefore, we build and analytically solve a
dynamic programming model with two priority types of tasks and show that the validity of this hypothesis
depends strongly on the structure of the instantaneous costs that a person has to face if a given task is kept on
the list for more than one period. Moreover, one interesting finding is that in one of the situations the protocol
used to execute the tasks generates complex one-dimensional dynamics.
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I. INTRODUCTION

Empirical evidence has shown that the dynamics of inter-
event times driven by human actions may not be well de-
scribed by Poisson processes �1–3�. Based on this, Barabási
�4� developed a very interesting model of human activity
where the distributions of the interevent times are conse-
quences of the decision queue process. He considers that
among the most relevant protocols for driving human dy-
namics, e.g., first-in-first-out protocol, random protocol, and
a protocol based on the execution of the high priority item,
the latter protocol seems to be the most important. In this
protocol, while high priority tasks are executed as soon as
they are added to the list, low priority tasks wait for a long
time until all high priority tasks are executed, i.e., the in-
stants of execution of low priority tasks are separated by
long times of inactivity. Using this assumption, it is shown
numerically in Ref. �4� and analytically in Ref. �5� that the
distribution of interevent times follows a power law.

Two interesting contributions were introduced by Ref. �6�.
First the authors map the variable queue length priority
model considered above onto a model of biased diffusion
deriving asymptotic distributions for the interevent times.
Second, in order to investigate the arising of power laws in
more general situations, they generalize the fixed queue
length model to include tasks with a priority label and with a
class label where there is always an active class and an in-
active class. If the highest priority task of the inactive class
exceeds that of the active class by at least a fixed switching
cost, the inactive class becomes active and the active class
becomes inactive.

An interesting discussion is considered in Ref. �7,8�
where it is argued that other mechanisms contribute to the
distributions of waiting times such as deadlines, time depen-
dence of priorities, and the social context of the problem. In
line with this debate, Ref. �9� relaxes the assumption that the
priorities of tasks do not change over time and studies queue-
ing systems where deadlines are assigned to the incoming
tasks and the urgency to attend a task increases with time
showing that only in the former model fat tails arise naturally
as consequence of the scheduling rule.

In this paper, we investigate the assumption that people
execute tasks following a protocol that first executes the high
priority item. In particular, we suppose that people assign
priorities to the tasks on their lists in order to minimize some
cost index, i.e., a cost associated to keep a nonprocessed
collection of tasks in a current period. Therefore, based on
this assumption and inspired by Refs. �4–6�, we have built a
discounted stochastic dynamic programming model with two
types of tasks �low and high priority tasks� and a cost per
stage for keeping a number of low and high priority tasks
without processing.

This is not the first time that a kind of optimization prin-
ciple is used to understand the structure and dynamics of
complex systems. In Refs. �10,11�, for instance, it was shown
that complex networks may arise from optimization prin-
ciples. It is also important to stress that although there is a lot
in the literature dealing with control of queue discipline
�12–14� which this work is related to, the model presented in
this paper is neither an extension nor a particular case of any
of these results.

We have found that the type of protocol used to execute
tasks is strongly dependent on the kind of instantaneous cost
of keeping a task in the queue for an additional stage. When
linear costs are used the protocol of executing preferentially
the high priority costs is always the best solution. However,
this does not happen when quadratic costs are considered. In
this case different types of protocol are considered. Further-
more, depending on the parameters of the system, the proto-
col considered generates complex one-dimensional dynam-
ics.

II. SETUP OF THE PROBLEM

We consider that there are two queues waiting for a ser-
vice on a single server. Let g�xL ,xH� be the current cost of
having state �xL ,xH� which is the state of the system, where
xL �xH� is the number of tasks in the first �second� queue. We
say that the first queue is a low priority queue �or the second
queue is a high priority queue� if �

�g�xL,xH�
�xL

�xL=xH

� �
�g�xL,xH�

�xH
�xL=xH

. We assume that this is the case. The dynam-
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ics of these queues are modeled as follows: at each period
there is a probability �� of a new task arrives in the queue
formed by high priority tasks and a probability ��1−�� of a
new task arrives in the queue formed by low priority tasks.
Within each of the queues the tasks are executed on a first in,
first out basis. With probability �u�xL ,xH� the first task of the
high priority queue is executed and with probability
��1−u�xL ,xH�� the first task of the low priority queue is
executed. We assume here that u�xL ,xH� is the state-
dependent control variable that the agent will choose in order
to minimize the total cost function Ju�xL ,xH�
=ExL,xH

u (�t=1
� �tg�xL�t� ,xH�t��), where � is the discount factor

and ExL,xH

u �¯� is the expected value conditioned to the cur-
rent state �xL ,xH� and to the state control variable u�¯�.

Due to the principle of optimality �15,16� and the Banach
fixed point theorem, if the minimum cost function J�xL ,xH�
=minu�xL,xH���0,1�Ju�xL ,xH� exists, it must be given by the
unique solution of the Bellman equation, that may be written
as

J�xL,xH� = F�xL,xH� + min
u�xL,xH���0,1�

u�xL,xH�G�xL,xH� , �1�

where

F�xL,xH� = g�xL,xH� + ���1 − ����J�xL,xH + 1��

+ ��1 − ���1 − ����J�xL + 1,xH��

+ �1 − �����J�xL − 1,xH��

+ �����J�xL − 1,xH + 1��

+ �1 − ������J�xL,xH��

+ �1 − ���1 − ����J�xL,xH�� �2�

and

G�xL,xH� = �1 − ������J�xL,xH − 1� − J�xL − 1,xH���

+ ������J�xL,xH� − J�xL − 1,xH + 1���

+ �1 − �������J�xL + 1,xH − 1� − J�xL,xH��� .

�3�

Since the optimization problem �1� is a linear program-
ming problem, the optimal control u�xL ,xH� in each state
�xL ,xH� will depend explicitly on the signal of G�xL ,xH�. If
G�xL ,xH��0, then u�xL ,xH�=0. If G�xL ,xH��0, then
u�xL ,xH�=1. Finally, if G�xL ,xH�=0, u�xL ,xH� is a mixed
strategy that may have any value in the interval �0,1�. It is
quite intuitive this result. Indeed, one may note that the terms
in square brackets defined in G�xL ,xH�, Eq. �3�, comprise the
variations in the cost function due to changes in the states of
the queue related to the execution of one of the tasks. Since
the properties of the solution of J�xL ,xH� of the Bellman
equation �1� are strongly dependent on choice of the cost per
stage g�xL ,xH�, in the next sections, two different choices for
g�xL ,xH� are investigated.

III. LINEAR COSTS

In this section, we assume that g�xL ,xH�=hLxL+hHxH, for
0�hL�hH, i.e., the current cost of having one additional

high priority task in the queue is larger than having one
additional low priority task in the queue.

Since the space of polynomials of degree 1 with the sup
norm is a Banach space, one can show inductively, making
recursive iterations of the dynamic programming mapping,
that J�xL ,xH� is also linear. Therefore, for xL�0 and xH�0,
one may easily solve the Bellman equation �1� and show that
the cost function is given by �19�

J�xL,xH� = c + cLxL + cHxH. �4�

Furthermore,

G�xL,xH� = �
�

1 − �
�hL − hH� �5�

is always negative implying that u�xL ,xH�=u=1 for every
state �xL ,xH�. Therefore, if linear costs are considered, the
protocol to be considered is the one based on the execution
of the high priority task whenever there is at least one item in
this queue, i.e., xH�0. This kind of protocol was very well
studied in Refs. �4–6� where analytic results for the emerg-
ing of power laws may be found. In the next section, a more
interesting situation arises where the optimal policy is not
only limited to execute the high priority item in the queue,
but the optimal policy is state dependent.

IV. QUADRATIC COSTS

Now, we assume that g�xL ,xH�=hLxL
2 +hHxH

2 , for 0�hL
�hH. Following the same reasoning already presented before
for the linear cost case, one may conclude a quadratic form
for the cost function.

Solving the Bellman equation, one may show that the
solution of the problem depends explicitly on the signal of
the function G�xL ,xH�, defined in Eq. �3�, in the state
�xL ,xH�. In fact, three different regions will arise. We will
call region A the domain of �xL ,xH� where G�xL ,xH��0,
region B the domain of �xL ,xH� where G�xL ,xH�=0 and re-
gion C the domain of �xL ,xH� where G�xL ,xH��0.

We have found that the minimum cost function and the
optimal control are given respectively by:

J�xL,xH� = 	JA�xL,xH� if �xL,xH� � A ,

JB�xL,xH� if �xL,xH� � B ,

JC�xL,xH� if �xL,xH� � C

 �6�

u�xL,xH� = 	 0 if �xL,xH� � A ,

u � �0,1� if �xL,xH� � B ,

1 if �xL,xH� � C ,

 �7�

where for i=A ,B ,C

Ji�xL,xH� = ci + cL1
i xL + cH1

i xH + cL2xL
2 + cH2xH

2 , �8�

Gi�xL,xH� = ��cL1
i − cH1

i + 2�cL2xl − cH2xH� + cL2�2��1 − ��

− 1� + cH2�1 − 2���� �9�

and G�xL ,xH�=Gi�xL ,xH�, if �xL ,xH�� i �20�.
Furthermore, the parameter �� ��� , �̄�, defines the set of

points of R2 such that G�xL , �hL /hH�xL+��=0 �21�. Indeed,
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� → �� ⇒ �JB��� → JA,GB��� → GA� �10�

and

� → �̄ ⇒ �JB��� → JC,GB��� → GC� . �11�

In order to understand the intuition behind this solution,
one is invited to consider a particular case where hL /hH�1,
�=�=1 and �=1 /2. In this case, the region B is defined by
the set of points where �xH−xL � �� / �1−��. Therefore, the
set of points where the decision maker can use any strategy
depends strictly on the discount factor. If the discount factor
is large, the decision maker may keep queues with a large
difference between their sizes. On the other hand, if the dis-
count factor is small this situation is not accepted as a solu-
tion anymore.

Differently from the linear costs case, several types of
protocol are possible. Region C considers a protocol based
on the execution of the high priority task. Region A considers
a protocol based on the execution of the low priority task. It
occurs in order to avoid that the size of the queue of the low
priority tasks do not increase too much. “Too much” here is
measured by the ratio hL /hH. In the region B there is not a
unique protocol. It can be a random protocol �mixed strat-
egy� or simply a protocol similar to that considered in region
C or in region A. Figure 1 shows the geometry of these
regions in the plane xL−xH.

It is not difficult to show that the expected value of the
state obeys the following dynamics:

Et�x�t + 1�� = Et�xL�t + 1�
xH�t + 1�  = �xL�t�

xH�t� 
+ ���1 − �� − ��1 − u�xL�t�,xH�t���

�� − �u�xL�t�,xH�t�� 
�12�

which has infinite fixed points if and only if �=� and
u�xL ,xH�=u=�. We will analyze only the most interesting
situation which is the fixed-length-queue, i.e., �=�. There-
fore, assuming that �=�, uB=�+	 and 	�0, then the ex-

pected value of the system is governed by Et�x�t+1��=x�t�
+�	e if it is in region B and by Et�x�t+1��=x�t�−��e if it is
in region A �if the state is in region C, the expected state will
certainly come to region B and will not come back to this
region�, where e= �1,−1��. Therefore, the dynamics takes
place in the line passing by x�0� and following the direction
e. Thus, if the expected state is in region B it goes into the
direction of region A and vice versa. This dynamics is
equivalent to the one-dimensional system

y�t + 1� = �y�t� + t+ if y�t� 
 0,

y�t� − t− if y�t� � 0
� �13�

defined on the interval �−t− , t+�, where t+=�	 and t−=��.
The dynamics of this system is plotted in Fig. 2 for the

case of t−=0.25 and t+=0.15. The dynamics defined in Eq.
�13� is topologically conjugate with the circle rotation �17�.
Therefore, if t+ / t−= p /q, where p /q is a irreducible ratio rep-
resentation of rational number, then this system follows a
limit cycle with period p+q. Otherwise, the �-limit of any
point in the interval is a dense subset of it. Therefore, we can
conclude that the stochastic process that defines the length of
each queue is not stationary. Moreover, the dynamics of the
expected value of the length of the queue exhibits a complex
behavior: cycles of any order or a limit set being a dense
subset in the interval. The intuition behind that complex dy-
namics is quite reasonable. In the region close to the frontier
xH= �hL /hH�xL+�� that separates A and B �see Fig. 1�, we can
observe the following: if the expected state is in A, its dy-
namics moves toward region B, since the priority is of L.
Once the expected state is in B, the dynamics takes it back to
the region A, since in this case in average the priority is of H
�due to the condition uB=�+	 and 	�0�. Because the fre-
quency of tasks arriving is equal to that of attending them, a
cyclical or complex dynamics emerges close to the referred
frontier. Figure 2 shows the case where this system is a limit
cycle. A similar situation involving regions B and C arises in
the case of 	�0 and �=uB+	. In these situations, the proto-
col is ruled by the protocols considered in regions A and B in
the former case and by the protocols considered in regions B
and C in the later case.

For ���, either the expected value goes to infinite, con-
verges to 0, to axis xL=0 or to axis xH=0, following different
routes. Furthermore, different kinds of protocols are possible.

�

� xL

xH

����������������������

δ

xH = (hL/hH)xL + δ

����������������������

xH = (hL/hH)xL + δ

A

B

C

−(hH/hL)δ

FIG. 1. The regions A, B, and C in the plane xL−xH.
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FIG. 2. The evolution of y�t� for y0=−0.2, �=0.5, �=0.5, and
	=0.3.
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V. FINAL REMARKS

In the human dynamics of the tasks execution decisions
the priority of one task is not always defined as being the
most important current task. Actually, the dynamics of the
work executions depends on the cumulated tasks of short run
priorities, the importance of each kind of task and the inter-
temporal discount factor. In this paper, we provide a stochas-
tic dynamic programming model containing all those ele-
ments and analyze the dynamics of the execution of tasks,
shedding new light on the discursion considered in Ref.
�7,8�. In this setting, we have found that the dynamics of the
expected state of the system may be complex, exhibiting
cycles of any order or with limit set being a dense subset of
the interval depending on the parameter values of the model.
This is a contribution to a better understanding of how hu-

man dynamics may evolve in this type of problem. Finally, it
is worth noting that complex dynamics in the solution of
dynamic programming problems are usually obtained for low
discount factors �18�. However, in our quadratic case, com-
plex dynamics arises for discount factors of any size.
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